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A general density matrix treatment is presented for the localized dynamics of a molecular system strongly
coupled to a medium, and leading to dissipation and fluctuation phenomena. A self-consistent field description
allows for the response of the medium when this is driven away from equilibrium. The dynamics of the
primary region is described with a dissipative potential within an atomic model, whereas the medium is
described in a statistical manner in terms of dissipative rates. This treatment is applied to the femtosecond
photodesorption of CO from the Cu(001) surface, in a model which includes several vibrational modes of the
adsorbate, and the nonlinear response of the substrate metal treated with a modified optical Bloch equation.
A computational procedure based on the split operator propagator and fast Fourier transform is applied to
several studies with an increasing number of adsorbate degrees of freedom. It introduces a combination of
discretization on a grid and expansions in basis sets of vibrational adsorbate states, to obtain results on yields
of desorbed CO versus the fluence of the light pulse, in very good agreement with experimental results.

1. Introduction

The dynamics of a many-atom system in contact with a Ky
medium involves special challenges because it requires a i :
description of fluctuation and dissipation phenomena. This D o
contribution presents a density operator treatment of dissipative vy Vo

guantum dynamics, suitable for phenomena where the system
and its surroundings are strongly interacting, and where the
system contains many atoms or alternatively many degreesof || = Tttt
freedom. It describes two different approaches that account for
dissipation. One of them, based on dissipative potentials, is
suitable foradetailgd trea.tmlentlwithin a molecular mode.l,.and Figure 1. Schematic partition of the whole system into p- and

the other one describes dlSSIpatIOI"I in terms of rate COGﬁICIentSS_regionS’ with the p-region containing the molecule of interest and
that can be obtained semiempirically or from kinetics models. the surrounding bonded atoms.

A numerical procedure is given to solve the coupled differential

equations arising from our treatment, and an application is active media, excited by the absorption of light. Aspects of this
presented for the photodesorption of CO from the Cu(001) metal formulation within a density matrix theory have recently been
surface resulting from absorption of a femtosecond pulse of published? 11

visible light. The treatment of quantum dynamics in the primary region
The study of the quantum dynamics of a molecule M in a has many aspects in common with the treatment of isolated
medium or bath B requires a combination of quantum and molecular systems, particularly when time-dependent methods
statistical mechanics to incorporate thermal effects and non-are used?2° Numerical methods developed for isolated
equilibrium initial conditions. The density operator, satisfying system3!=26 can be extended to systems undergoing dissipative
the Liouville—von Neumann (EvN) equationt=2 provides a dynamics, as we shall mention.
general tool for such studies. This presentation expands previous The subject of femtosecond desorption of molecules from
treatment$ @ to allow for the strong coupling of molecule and  solid surfaces has been actively studied experimentally and
bath, when both undergo fluctuation and dissipation processestheoretically in recent years, and several reviews have been
Starting with the equations for the whole system, a partition publishec®’-3! Our treatment is based on a model we have
into primary and secondary regions (p- and s-regions for short) recently developed to account for the dissipative dynamics of
is introduced to derive an equation for the primary region where these phenomena, making use of density matrix metfods.
a localized dynamics occurs. It contains the molecule and its |t has provided results for yields of CO desorbed from the
immediate surroundings, while the secondary region contains ground and excited vibrational state of the system versus the
the rest of the extended system, as pictorially shown in Figure fluence of the pulse, and for the delay between arrival of the
1. The present treatment is developed for phenomena involvingpulse and desorption, both in good agreement with experi-
ments3” and has also been used to predict the effect of chirped
T Part of the special issue “Donald J. Kouri Festschrift”. pulses on desorption yield&:3°
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2. Equations of Motion for Coupled Primary and be developed to go formally beyond the selfconsistent density
Secondary Regions operators, to include the statistical correlation of p- and s-region
dynamics by means of projection operatdrs.

The differential equation fop(t) can be derived introducing
Liouville superoperators shown as caligraphic symbols, such
that9¢ = [H,A] and starting with

The total system, made up of a molecule M and a medium
or bath B, interacting with light L, is described in a quantum
treatment by means of a Hamiltonian containing the energy
operators for the free molecule, the medium, the coupling
between the molecule and medium, the coupling between the ifof /ot = %f(t) (5)
molecule and light field, and the coupling between the medium
and the light field. However, in cases where the molecule is This can be transformed into an integrodifferential equation to
strongly interacting with its environment, as in chemisorption, display correlations in the s-regidnand we summarize the
it is more convenient to redefine the region where a localized derivation first without an external field. Decomposing the
dynamics of interest occurs. Introducing a primary (p) region Hamiltonian adi = F + H', whereF is a convenient, possibly

containing the molecule M and adjacent medium atoms, and atime-dependent, effective Hamiltonian to be defined, chosen here
secondary (s) region including the remaining medium, both ag

interacting with light, the Hamiltonian operator terms are

regrouped into the form F=F,+F — 0§,
. . . F,=H +G 6
) = A9 + A0 ® P =G ©
where with G = trJH I and M = tr, JH LT, and similarly
for the s-operators, so th&t is a SCF Hamiltonian with an
~(©) “ = 3 N N = 5 A average equal to the instantaneous energy of the total system,
H™(t) = Hp(X75<) +H({B}) + Hpg(X,&,{ B}) involving the SCF potential§y(t) and Gg(t). This definition

leads toH' = Hps — (Gp + Gy + [Hpdd) a residual coupling
AO() = |5|p|(§(, t) + A {B}.b) 2) due to the non-SCF correlation of motions in the p- and s-regions
which averages to zero at all times.

Solving formally for the full density operatod(t), and
replacing it in the I==vN equation display the fluctuation and
dissipation term8.An equation forp follows by taking the trace
over s-states and averaging over s- initial conditions to obtain

with X a set of primary degrees of freedom, 48} a collection
of boson-like operators (electreimole pairs or phonons)
describing excitations of the s-region.

Our treatment of the dissipative dynamics starts with the
density operator (t) for the whole system, satisfying the-vN

. ~ o 2~ ~ - t 1 N (!
equation ihoplot = 7,p(t) + Z2,(t) p(0) — (ifh) [ dt' T (tt) p(t)
allot = — (iIMM)[AT(t) — T(t)A] (3) 1) = [T 1,0 TX0)]
This equation can be rewritten to display energy fluctuation and U%(t,t') =tr] ) () )] (7)

dissipative term8,and to incorporate assumptions about the
interaction of p- and s-regions. Strong couplings must be where 7 (tt') = expr[—i/} dt" F(t")/h] is a time-evolution
expected between p- and s-regions, and in our approach we havgperoperator written as a time-ordered exponential Znd
introduced a self-consistent field (or mean field) that allows it, 514, /7 are energy fluctuation and energy dissipation rate
in a statistical approximation that factors the total density g peroperators, respectively. A similar procedure can be fol-
operator Into p- and s-reduced density operaldts= try(I') lowed by reversing the roles of p- and s-regions to derive the
andI'* = try(I'), where the trace hasséaeen taken to sum Over s- gquation forf(t). The secondary region, however, evolves in
and p-region variables, respectiveély*® The p-density operator  time much more rapidly than the primary region, because its
is to be obtained from a detailed molecular model, whereas the gnergy is spread over many more degrees of freedom, so that
s-density operator must be known only within a statistical the gissipation of energy in the p- and s-regions can best be
description. This involves a statistical distribution for a given {reated separately.
macroscopic properties such as the initial temperaluend An equation for the p-region density operator can be derived
number densityN of the s-region and for initial values of ging the assumptions that fluctuation forces average to zero
q;;nadmlc_al propertles._Thefftahctotrfaltlgn C‘_itn be Juft'f'ed bY on the primary time scale, and that the dissipation is instanta-
introducing an averaging of the total density operator over a o A ,
PR L ; . neous, so that? (t)p(0) = 0, andA~1 7 _(t,t)p(t) = S(t—t
distribution of initial values of the properties of the s-region, 90 () whichpfjt)a?i(ne):s a time-depeng(ent)l()j(is)sipati\(/e p)oten-
shown in what follows by an overline, so that in particular tial superoperato?/’(t), to the right. These will be called here

IP(t) = p(t). Those properties can be positions and momenta in the stochastic medium assumptions. The equatiop(fpis then
the medium, or the initial amplitudes of its collective density

fluctuations. The starting assumption is then that aplot = —(i/h)[:‘7p — (i/12) ‘7/{)],6(0 (8)
f(t) = p(t) ® 1) (4 In our previous work?—36 we have implemented this ap-

proach in a computationally convenient way, starting instead
at all times. This factorization is less restrictive than the With @ total density operator expressed Ln_terms of density
assumption of a factorized wave function in other treatments, @mplitudes¥, (1) with statistical weightsv,, asT’ = Z,w,|W,[x
insofar as the present choice is equivalent to a statistical W,| and factorized formsw, = w’;w; and W, (t) = wh(t)
superposition of factorized density amplitudes. A treatment can lP;(t), and constructing as above an integrodifferential equa-
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tion for the p-region amplitude. The p-density operator is

P = 5w, WA ©

and the stochastic medium assumptions give then p-amplitude

equations
0 A
iz lyl= (Fy — IW/2)lye(®D (10)

where now\fvp is a positive dissipative operator quadratic in
the residual couplingd’,®2 given by

W (t) = (2/h) fot dr trJA'O (L) AT(E)] (1)

and the normalized p-amplitudes ap@P0= |ybUEP|1yP0
This explicit form for the dissipative potential allows for its
calculation or parametrization starting with an atomic model
of the p-region. Additional details may be found in refs 9 and
32.

Dissipation in the s-region can be treated similarly, making
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To summarize, the description of coupled p- and s-regions
requires the solution of the following set of coupled differential
equations.

Dk = — HEL0 — M/21EKY  (A)

dT/dt = F[T(),N()]  dN/dt = G[T(t),N(®)]  (B)
dy¥dt = —(IR)FL) Ol + 7O (©) (14)

Here the functiong& andG can be obtained from treatments of
near equilibrium processBg®and contain macroscopic param-
eters such as heat capacities,Aexcitation rates, and relaxation
rates. The Hamiltonian operatéy(t) and the matrixF(t) of

the effective Hamiltonian in the s-region are shown to be time
dependent, to allow for inclusion of couplings with an external
light pulse of electric field!(t). The set of coupled equations

in eqs 14A-C must be solved coupled to each other.

In the application that follows, the external field first excites
the s-region by coupling to its polarizability operator, giving a
density operatof’s = I + I}, where the second term results
from the response of the s-region to the field. This then shows
as an indirect excitation of the p-region, through the SCF

A AQ Al .
the same stochastic medium assumptions to obtain the equatioPotentialG, = G, + G, The second term here is expressed as

of motion
ol ot = —(ilh) 71(t) + 7 O1%(t) (12)

where 7'® is the dissipative rate superoperator in the s-

the field coupled to an effective p-dipole operator, which can
be parametrized from experimén#* or alternatively by the
coupling of the p-dipole operator to an effective field in the
p-region, as has been more recently derived from a theory of
the nonlinear response of the s-region to a pulse of figfft.

To implement a numerical solution of these equations, it is

region? To proceed, one must note that the s-density operator further necessary to transform the partial differential equation
can be obtained only as a statistical property, insofar as it of the p-density amplitudes into coupled ordinary differential
describes a medium subject to thermodynamical constraints. Atequations in time. This can be done expanding the amplitudes

the initial time it is prepared at a certain temperatligeand

with a chemical potentialo, or equivalently an average number
density No. The s-region is further found in stationary states
1112 As the total system is perturbed and coupling with the

in a basis of electronic statés®)(X)[J, to obtain

WX = Zwﬁﬁ”&owﬁ’}f%io (15)

p-region takes effect, the s-region undergoes changes in tem-

perature and density and transitions between states.
Instead of trying to describe the s-region in full detail, it is

where the bracket notation refers to states of the electronic
system, and using either discretization of the atomic position

enough to follow its dynamics only to the extent needed to variablesX on a grid or expansions of the stanpg';) in basis
model the phenomena of interest in the p-region. This can be sets, or a combination of discretization and basis set expansion.
achieved by using a description of the s-region in terms of its This transforms the partial differential equation fgf(X.t)

time-dependent macroscopic temperatdrg) and number
densityN(t), and of its reduced density operaft), obtained
from a subse{®3} of s-region states. Equations for the time
evolution of T(t), N(t), and¥(t) can be derived froni's(t).36
Writing the (ps)-coupling Hamiltonian in the forrﬂpS =
ZkA'(]k)ng), the s-dissipative rate superoperator takes the form

LT = YUETOET - 167E, T0)L/2
(13)

into a set of coupled ordinary differential equations for
amplitudes in a matrix representatigft) of yP(t) for given
initial statea,

S = = 0 — W02 () (19)

The equations in sets (18/A(14B), and (14C) are all coupled,
but sets (14B) and (14C) can first be integrated over time to
obtain the response of the s-region, and their results can be
interpolated over time as needed to integrate the set'j18A

where the last term is an anti-commutator. This expression is Where the effective field must be obtained from that response.

of the Lindblad fornf!? and it is known to give a density operator
that is positive definite over time. One way to implement this
in applications, already used in studies of photodesorfiéh,
is to make the choiceC = /i, |®50®S|, where the
transition ratesk;—.,;, obtained from separate calculations

For a basis set in the s-region of dimenshd) sets (14B) and
(14C) contain K3)? + 2 coupled equations, which must be
solved with a numerical procedure suitable for the fast density
oscillations in that region. The total number of p-region
amplitudes that are coupled over time depends on the number

or from experiment, can be used to construct the dissipa- Ng, of electronic basis functions there, the number of grid
tive rate operator. This leads to an equation of motion for the pointsNg for atomic position variables, and the numidér of

reduced matrixyS(t) with elements/;;%(t) in a basis of stationary
s-states.

atomic basis functions, which give a totallgf, Ng N§ coupled
differential equations in time. These contain the effective field
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Figure 2. The COCus cluster model of CO/Cu(001) for the adsorbate
region. HereZ is the position of the center of mass of CO above the
surfacex is the frustrated translation variable, athdnd¢ are frustrated
rotation variables.

in the p-region and can be solved with an extension of the split-
operator propagator that includes a dissipative potential matrix.

3. An Application to Femtosecond Photodesorption in
CO/Cu(001)

The main steps in the femtosecond photodesorption of CO
from Cu(001) are excitation by the substrate, followed by energy
transfer to the adsorbate region and break-up of the Cu
bond?74445The desorption dynamics is fast compared with
vibrational motions in the substrate metal, so that only electronic

excitation and de-excitation of its electrons must be considered.

The steps are as follows.

COW)/Cu(001 2% cow)/Cu(001)* (light absorption)

CO()/Cu(001)*— CO(') + Cu(001)* (breakup)

corresponding to an indirect photodesorption, wheiredicates
the collection of vibrational quantum numbers for the normal

Micha and Santana

whereDg(t;Zs) is the average substrate dipole induced by the
applied field inside the metal at distange
Expanding the amplitudes in a basis set of vibronic states

|D,,(Zx,0.8) = |65(Zx,0,0)B7,(x) U, (6) Vi(¢)

where the ket indicates an electronic state for fixed nuclear
positions, andp,,, Uy, and Vs are basis functions suitable for
the surface vibrational modes with quantum numhers (vy,

r, s), the p-amplitudél,, starting in the ground electronic and
vibrational states of the adsorbate, is

W (ZX,0.0.H) 0= ;|<I)J\,,(Z,x,0,¢)[3y;$%v(z,t) (20)

(19)

with J = g, e electronic states, and the equation for the matrix
yu(Z,t) of coefficient functions is

™ _ i " (nu)
o = — g[Fp — IWP/Z — op(t)Dp]l/J n

(21)

to be solved with a split-operator propaga&tomodified to
include the dissipative potential term, and using a fast Fourier
transform on &-grid of N¥) values. The effective electric field
in the p-region,&y(t) is obtained from the nonlinear response
of the metal substrate as explained below.

Desorption yieldsy, from initial vibrational-electronic state
o = (g, vz, V), are obtained integrating the probabilities from a
desorption distancgp to infinity,

Y, (1) = Z [y 4z Gz (22)

which also provides the time evolution of the desorption yield
as a pulse of light is applied.

The potential energy functions in the p-region were previously
obtained from information about measured bond distances and
energies for the ground state and from electronic structure
calculations within a semiempirical approximation for ground
and excited states. Electronic states were obtained from

modes of the adsorbate. The modes with the lowest excitationzNpO—C] calculationg-#8which provided potential energy

energy, and most likely to be excited during desorption, are
the so-called frustrated translation and frustrated rotaffonke

surfaces and transition dipoles for adiabatic states for our model
of CO adsorbed on a cluster £of surface atoms. The excited

position of the center of mass of the CO above the surface is gtate with the largest transition dipole in the region of relevant

called Z, the frustrated translation coordinate parallel to the
surface isx, and the frustrated rotation angles afg ¢), as
shown in Figure 2, in a cluster model COxJar the adsorbate
site.

In our model, the transfer of energy from the substrate metal
to the adsorbate region is mediated by the dipaligole
interaction

D,(T )PL(FY — 3ID,(T ) JPLT )7,
—r— 3

7)

A= [dr,
ITs—

pl

from which the SCF potentidb,, the dissipative potentiahy,
and dissipative rates in the s-region can be derived. ﬁgﬂe
the dipole operator of the p-regioﬁ’,S is the dipole operator
per unit volume in the s-region, amgd=Ti/r;, i = p, s, denotes

a unit vector in the p- or s-region. This simplifies for an electric
field of long wavelength polarized parallel to the surface, to
give for the SCF potentiél

Go(Tp) = Dy(z) D(LZIIZ — 7| ° (18)

photon energies (around 2 eV), and the ground electronic state,
form a two-state basis set, so thatJy, e, giving an adiabatic
electronic representation of operators in terms ef 2 matrices.

The matrices were then transformed into a diabatic representa-
tion, to eliminate momentum couplings and numerically solve
the matrix differential equations. The potentials and couplings
were parametrized as shown in our recent study of the dynamics
induced by an intense laser puféé53°Further expansion in
vibrational states and on a grid f& transforms the partial
differential equations into coupled ordinary differential equa-
tions. In matrix form, the equation for the nuclear density
amplitudes is in detail

i i
A K+V+G 2W
The propagation of the density amplitudes has been done
specifying initial states at = 0 with vibrational quantum
numbersvz = vx = vy = vy = 0, corresponding to ground
vibrational states of frustrated translations and rotations.

The integration over time in the p-region was done with a
split-operator propagation (SOP) schéif@and a fast Fourier

d [
v = poO @3
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transformation (FFT) between space domain and momentum= yol + Zgjy;, whereg;, j = 1, 2, 3, are the Pauli matrices,
domain for the space variables, repeatedly used at time intervalsand yo = %/, by normalization. It is obtained by solving the
th = to + nAt, n =1 to N;, and modified to include a dissipative = modified optical Bloch equations containing dissipative rates
potential®334The SOP factorization can be used repeatedly, first and a femtosecond light pulse,

for the dissipative potential and then for the SCF Hamiltonian

including the field, to obtain the time evolution of the wave Y —O.f "N
function fromt to t + At as 717 Qo (073 Teon
Y(t+AY) = U(t+AL) y(t) _ V2
B , V2= = f )y ——
U(t+Att) = U, (AV2) U'(t+AL,t) U, (At/2) Tcoh
= — . 1 ~
Un(AU2) = expl-WAU(4h)] 2= Qo — Q) ) — (= 7)) (28)

U'(t+ALY = exp{ —i[K + V + G'O]AVR}  (24) PP

o . HereQ; = —2Re() Soh andQ, = — 2Im(d2) &k are Rabi
with V'(t) = V + G(t) so that frequencies containing the one-electron transition digglerpop

, . o S is the decay time of the population difference, angh is the
U'(t+ALY) = exp[-iV' () AU(2h)] exp[—'lKAt/h] coherence relaxation time, both derived from the electronic
exp[=iV'()AU(2h)] (25) relaxation rated®

Calculation of the nonlinear response also requires solutions
of the rate equations for the time-dependent excited electron
density and temperature in the metal substtae3?

which is accurate to ordeAts. Exponentials of matrices are
easily obtained by diagonalization of the exponents, and the
exponential with the kinetic energy operator follows from a fast

Fourier transform to momentum variables. The propagation was dN?
done with a grid of points in th& variable, with vibrational el _ Ne — K.N*
\ . 0INtS . with VI JONg — KNg,(t)

basis sets of increasing size, and with sufficient time steps to dt
converge to desired accuracies. ATy GedTn — Te) + St

In the s-region, the nonlinear optical response of the metal = (29)
substrate results from electronic excitations between band states dt Ve Tel
that can be described as vertical transitions of fixed wavevector _ _ ) ]
k, between conduction and occupied bands=l, u. It is whereJ(t) = S(t)Bs, 1) is the pumping rategep is the electror

sufficient for our model to assume that electronic transitions Phonon coupling constante is the electron specific heat
occur between one-electron band states and to describe thenfonstant, anq is a rate of decay due to electrealectron

in terms of the one-electron density matrix in the s-region. The @nd electrorrphonon collisions. _ _
one-electron density operat@@'(t) in the s-region becomes The two sets of equations above.pr.owde the SCF potenual
therefore a 2x 2 matrix, and the average value of the total energy operator .and effective electric field at the p-region, and
electric dipole in the s-regiom(t), can be obtained from the " particular, their components lead to energy transfer, from
one-electron dipoled® and a knowledge of the number of

electronsNg(t) in the s-region, by means of Gy(t) = —Dy(zy) &p() sin(wgt)
N I — N (el) _ -3
5.0 = N (t\trs[;”/g'(t)dg'] K (t\zbvb e d2 26 Sp(t) = —Ng(D1dg,12y,(01Z — z| (30)
s et trg )”/E'(t)] et b yﬁ!b as follows from energy transfer from s- to p-regions through a

dipole—dipole interactior?®
The p- and s-regions are coupled through the dissipative The physical parameters needed in the potential functions and
potentialW(Z,t) and an effective electric field(t) generated dipole of the p-region, and the optical Bloch and transport
by the s-dipoleDg(t), which couples tdDy. equations for the s-region, have been obtained from our previous

The time evolution of the electronic density matrix can be electronic structure calculations and from experiment, as

obtained from the optical Bloch equationfyr a femtosecond  tabulated in refs 34 and 36 for tleandx dependencies, and
light pulse chosen of the form as recently calculatéd®3 for the 0 and ¢ dependencies. The

pulse parameters were a light wavelengéh= 620 nm, pulse

&) = o exp[—4(t — t))/7,7] cosh) (27) width 7, = 100 fs, and field strength in the range-6 mJ/cn?.

The s-region equations (28) and (29) were integrated with a
and introducing the rotating wave approximation, which keeps Runge-Kutta algorithm and time stept determined by a
only terms that satisfy the resonance conditign— eg = hw. relative error tolerancg = 10~ and provide the effective field
Dissipative effects due to energy transport away from the surface &y(t). With a basis set of dimensidngs) = 2 for the reduced
into the metal, and due to energy transfer to the adsorbate bonddensity matrix, the number of coupled s-equations®&= 5.
that breaks up, can be described with the dissipative superop- The p-region equations (23) are solved with an expansion in
erator7’ " in those equations. As in our previous treatnint, a basis set ofN®) = 2 electronic statesN$ vibrational
dissipation in the s-region is described in a semiempirical way functions and discretization on a grid NEP) = 512 points for
using the Lindblad formf’/)éD)gs = (ChpL) — 1/2[CIC,, Z, giving matrices of dimensiolN® = 2N®-N&. The time
7s+), where now the operatofs; = \/ammm are obtained propagation is done with a split-operator and a time ateg
from relaxation rates,y due to electrorelectron collisions 5.0 au takerN; = 3000 times, with the effective electric field
and interband transitior®§. The density matrix can be conve- obtained at each time step by interpolation. The nonlinear
niently propagated in time using its Pauli components from  dependence of yields versus the flueRogas considered within
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0.07 . T . T " T T that the 3-D model also gives a flatter graph, due to increased
I e Experiment (Prybyla et al. 1992) de-excitation rates.
006F |..... 1-D model (2) A
- — —. 2-D model (Z,x),10 basis functions G 4. Conclusions
0.05F + =+ 2-D model (Z,0), 12 basis functions A . - .
I — 3-D model (Z,x,8), 60 basis functions AT The present paper describes a general density matrix approach
0.04 = . for the treatment of dissipative dynamics of a primary region
=} . . . .
CHE with many coupled quantum states, strongly interacting with
” 0.03 = an active medium or secondary region. This approach leads to
- . sets of coupled differential equations (14A)1L4C) in the text,
0.02 7 obtained from an atomic model of the p-region, and a statistical
[ 1 model of the s-region.
R ] The treatment was applied to the photodesorption of CO from
[ Cu(001), a case where four space variables have been treated
0 . ;
s 5 guantum mechanically, and up to 60 coupled states on a grid
Fluence (mJ/cm’) were included in density matrix calculations of models with an

Figure 3. Yield of desorbed CO versus light pulse fluence for models increasing number of degrees of freedom in the p-region.
with several degrees of freedom as shown in the inset.
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