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A general density matrix treatment is presented for the localized dynamics of a molecular system strongly
coupled to a medium, and leading to dissipation and fluctuation phenomena. A self-consistent field description
allows for the response of the medium when this is driven away from equilibrium. The dynamics of the
primary region is described with a dissipative potential within an atomic model, whereas the medium is
described in a statistical manner in terms of dissipative rates. This treatment is applied to the femtosecond
photodesorption of CO from the Cu(001) surface, in a model which includes several vibrational modes of the
adsorbate, and the nonlinear response of the substrate metal treated with a modified optical Bloch equation.
A computational procedure based on the split operator propagator and fast Fourier transform is applied to
several studies with an increasing number of adsorbate degrees of freedom. It introduces a combination of
discretization on a grid and expansions in basis sets of vibrational adsorbate states, to obtain results on yields
of desorbed CO versus the fluence of the light pulse, in very good agreement with experimental results.

1. Introduction

The dynamics of a many-atom system in contact with a
medium involves special challenges because it requires a
description of fluctuation and dissipation phenomena. This
contribution presents a density operator treatment of dissipative
quantum dynamics, suitable for phenomena where the system
and its surroundings are strongly interacting, and where the
system contains many atoms or alternatively many degrees of
freedom. It describes two different approaches that account for
dissipation. One of them, based on dissipative potentials, is
suitable for a detailed treatment within a molecular model, and
the other one describes dissipation in terms of rate coefficients
that can be obtained semiempirically or from kinetics models.
A numerical procedure is given to solve the coupled differential
equations arising from our treatment, and an application is
presented for the photodesorption of CO from the Cu(001) metal
surface resulting from absorption of a femtosecond pulse of
visible light.

The study of the quantum dynamics of a molecule M in a
medium or bath B requires a combination of quantum and
statistical mechanics to incorporate thermal effects and non-
equilibrium initial conditions. The density operator, satisfying
the Liouville-von Neumann (L-vN) equation,1-3 provides a
general tool for such studies. This presentation expands previous
treatments4-8 to allow for the strong coupling of molecule and
bath, when both undergo fluctuation and dissipation processes.
Starting with the equations for the whole system, a partition
into primary and secondary regions (p- and s-regions for short)
is introduced to derive an equation for the primary region where
a localized dynamics occurs. It contains the molecule and its
immediate surroundings, while the secondary region contains
the rest of the extended system, as pictorially shown in Figure
1. The present treatment is developed for phenomena involving

active media, excited by the absorption of light. Aspects of this
formulation within a density matrix theory have recently been
published.9-11

The treatment of quantum dynamics in the primary region
has many aspects in common with the treatment of isolated
molecular systems, particularly when time-dependent methods
are used.12-20 Numerical methods developed for isolated
systems21-26 can be extended to systems undergoing dissipative
dynamics, as we shall mention.

The subject of femtosecond desorption of molecules from
solid surfaces has been actively studied experimentally and
theoretically in recent years, and several reviews have been
published.27-31 Our treatment is based on a model we have
recently developed to account for the dissipative dynamics of
these phenomena, making use of density matrix methods.32-36

It has provided results for yields of CO desorbed from the
ground and excited vibrational state of the system versus the
fluence of the pulse, and for the delay between arrival of the
pulse and desorption, both in good agreement with experi-
ments,37 and has also been used to predict the effect of chirped
pulses on desorption yields.38,39† Part of the special issue “Donald J. Kouri Festschrift”.

Figure 1. Schematic partition of the whole system into p- and
s-regions, with the p-region containing the molecule of interest and
the surrounding bonded atoms.
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2. Equations of Motion for Coupled Primary and
Secondary Regions

The total system, made up of a molecule M and a medium
or bath B, interacting with light L, is described in a quantum
treatment by means of a Hamiltonian containing the energy
operators for the free molecule, the medium, the coupling
between the molecule and medium, the coupling between the
molecule and light field, and the coupling between the medium
and the light field. However, in cases where the molecule is
strongly interacting with its environment, as in chemisorption,
it is more convenient to redefine the region where a localized
dynamics of interest occurs. Introducing a primary (p) region
containing the molecule M and adjacent medium atoms, and a
secondary (s) region including the remaining medium, both
interacting with light, the Hamiltonian operator terms are
regrouped into the form

where

with XB a set of primary degrees of freedom, and{B̂} a collection
of boson-like operators (electron-hole pairs or phonons)
describing excitations of the s-region.

Our treatment of the dissipative dynamics starts with the
density operatorΓ̂(t) for the whole system, satisfying the L-vN
equation

This equation can be rewritten to display energy fluctuation and
dissipative terms,5 and to incorporate assumptions about the
interaction of p- and s-regions. Strong couplings must be
expected between p- and s-regions, and in our approach we have
introduced a self-consistent field (or mean field) that allows it,
in a statistical approximation that factors the total density
operator into p- and s-reduced density operatorsΓ̂p ) trs(Γ̂)
andΓ̂s ) trp(Γ̂), where the trace has been taken to sum over s-
and p-region variables, respectively.32-36 The p-density operator
is to be obtained from a detailed molecular model, whereas the
s-density operator must be known only within a statistical
description. This involves a statistical distribution for a given
macroscopic properties such as the initial temperatureT and
number densityN of the s-region and for initial values of
dynamical properties. The factorization can be justified by
introducing an averaging of the total density operator over a
distribution of initial values of the properties of the s-region,
shown in what follows by an overline, so that in particular

Γ̂p(t) ) F̂(t). Those properties can be positions and momenta in
the medium, or the initial amplitudes of its collective density
fluctuations. The starting assumption is then that

at all times. This factorization is less restrictive than the
assumption of a factorized wave function in other treatments,
insofar as the present choice is equivalent to a statistical
superposition of factorized density amplitudes. A treatment can

be developed to go formally beyond the selfconsistent density
operators, to include the statistical correlation of p- and s-region
dynamics by means of projection operators.9

The differential equation forF̂(t) can be derived introducing
Liouville superoperators shown as caligraphic symbols, such
that Ĥ ) [Ĥ,Â] and starting with

This can be transformed into an integrodifferential equation to
display correlations in the s-region,5 and we summarize the
derivation first without an external field. Decomposing the
Hamiltonian asĤ ) F̂ + Ĥ′, whereF̂ is a convenient, possibly
time-dependent, effective Hamiltonian to be defined, chosen here
as

with Ĝp ) trs[ĤpsΓ̂
s] and 〈〈Ĥps〉〉 ) trps[ĤpsΓ̂

pΓ̂s], and similarly
for the s-operators, so thatF̂ is a SCF Hamiltonian with an
average equal to the instantaneous energy of the total system,
involving the SCF potentialsĜp(t) and Ĝs(t). This definition
leads toĤ′ ) Ĥps - (Ĝp + Ĝs) + 〈〈Ĥps〉〉, a residual coupling
due to the non-SCF correlation of motions in the p- and s-regions
which averages to zero at all times.

Solving formally for the full density operator,Γ̂(t), and
replacing it in the L-vN equation display the fluctuation and
dissipation terms.9 An equation forF̂ follows by taking the trace
over s-states and averaging over s- initial conditions to obtain

whereÛ 0(t,t′) ) expT[-i∫t′
t dt′′ F̂ (t′′)/p] is a time-evolution

superoperator written as a time-ordered exponential, andR̂ p
and M̂ p are energy fluctuation and energy dissipation rate
superoperators, respectively. A similar procedure can be fol-
lowed by reversing the roles of p- and s-regions to derive the
equation forΓ̂s(t). The secondary region, however, evolves in
time much more rapidly than the primary region, because its
energy is spread over many more degrees of freedom, so that
the dissipation of energy in the p- and s-regions can best be
treated separately.

An equation for the p-region density operator can be derived
using the assumptions that fluctuation forces average to zero
on the primary time scale, and that the dissipation is instanta-

neous, so thatR̂ p(t)F̂(0) ) 0, andp-1M̂ p(t,t′)F̂(t′) ) δ(t-t′)
Ŵ p(t)F̂(t), which defines a time-dependent dissipative poten-
tial superoperatorŴ p(t), to the right. These will be called here
the stochastic medium assumptions. The equation forF̂(t) is then

In our previous work,32-36 we have implemented this ap-
proach in a computationally convenient way, starting instead
with a total density operator expressed in terms of density
amplitudesΨµ(t) with statistical weightswµ, asΓ̂ ) Σµwµ|Ψµ〉 ×
〈Ψµ| and factorized formswµ ) wR

p wâ
s and Ψµ(t) ) ΨR

p(t)
Ψâ

s(t), and constructing as above an integrodifferential equa-

Ĥ(t) ) Ĥ(0)(t) + Ĥ(l)(t) (1)

Ĥ(0)(t) ) Ĥp(XB,
∂

∂XB) + Ĥs({B̂}) + Ĥps(XB,
∂

∂XB
,{B̂})

Ĥ(l)(t) ) Ĥpl(XB, t) + Ĥsl({B̂},t) (2)

∂Γ̂/∂t ) - (i/p)[ĤΓ̂(t) - Γ̂(t)Ĥ] (3)

Γĥ(t) ) F̂(t) X Γ̂s(t) (4)

ip∂Γ̂/∂t ) Ĥ Γ̂(t) (5)

F ) F̂p + F̂s - 〈〈Ĥps〉〉

F̂p ) Ĥp + Ĝp (6)

ip∂F̂/∂t ) F̂pF̂(t) + R̂p(t) F̂(0) - (i/p)∫0

t
dt′ M̂p(t,t′) F̂(t′)

R̂p(t) ) trs[Ĥ ′Û0(t,0) Γ̂s(0)]

M̂p(t,t′) ) trs[R̂(t) R̂(t′) †Γ̂s(t′)] (7)

∂F̂/∂t ) -(i/p)[F̂p - (i/2)Ŵp]F̂(t) (8)
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tion for the p-region amplitude. The p-density operator is

and the stochastic medium assumptions give then p-amplitude
equations

where nowŴp is a positive dissipative operator quadratic in
the residual couplingĤ′,32 given by

and the normalized p-amplitudes are|ΨR
p〉 ) |ψR

p〉/〈ψR
p|ψR

p〉.
This explicit form for the dissipative potential allows for its
calculation or parametrization starting with an atomic model
of the p-region. Additional details may be found in refs 9 and
32.

Dissipation in the s-region can be treated similarly, making
the same stochastic medium assumptions to obtain the equation
of motion

where L̂ s
(D) is the dissipative rate superoperator in the s-

region.9 To proceed, one must note that the s-density operator
can be obtained only as a statistical property, insofar as it
describes a medium subject to thermodynamical constraints. At
the initial time it is prepared at a certain temperatureT0 and
with a chemical potentialµ0, or equivalently an average number
densityNh 0. The s-region is further found in stationary states
Ψâ

s. As the total system is perturbed and coupling with the
p-region takes effect, the s-region undergoes changes in tem-
perature and density and transitions between states.

Instead of trying to describe the s-region in full detail, it is
enough to follow its dynamics only to the extent needed to
model the phenomena of interest in the p-region. This can be
achieved by using a description of the s-region in terms of its
time-dependent macroscopic temperatureT(t) and number
densityNh (t), and of its reduced density operatorγ̂(t), obtained
from a subset{Φλ

s} of s-region states. Equations for the time
evolution ofT(t), Nh (t), andγ̂(t) can be derived fromΓ̂s(t).36

Writing the (ps)-coupling Hamiltonian in the formĤps )
ΣkÂp

(k)B̂s
(k), the s-dissipative rate superoperator takes the form

where the last term is an anti-commutator. This expression is
of the Lindblad form,40 and it is known to give a density operator
that is positive definite over time. One way to implement this
in applications, already used in studies of photodesorption,36,41

is to make the choiceĈs
(L) ) xκλfλ′|Φλ′

s 〉〈Φλ
s|, where the

transition ratesκλfλ′, obtained from separate calculations
or from experiment, can be used to construct the dissipa-
tive rate operator. This leads to an equation of motion for the
reduced matrixγs(t) with elementsγλ′λ

s(t) in a basis of stationary
s-states.

To summarize, the description of coupled p- and s-regions
requires the solution of the following set of coupled differential
equations.

Here the functionsF andG can be obtained from treatments of
near equilibrium processes42,43and contain macroscopic param-
eters such as heat capacities, excitation rates, and relaxation
rates. The Hamiltonian operatorF̂p(t) and the matrixFs(t) of
the effective Hamiltonian in the s-region are shown to be time
dependent, to allow for inclusion of couplings with an external
light pulse of electric fieldE(t). The set of coupled equations
in eqs 14A-C must be solved coupled to each other.

In the application that follows, the external field first excites
the s-region by coupling to its polarizability operator, giving a
density operatorΓ̂s ) Γ̂0

s + Γ̂l
s, where the second term results

from the response of the s-region to the field. This then shows
as an indirect excitation of the p-region, through the SCF
potentialĜp ) Ĝp

0 + Ĝp
l . The second term here is expressed as

the field coupled to an effective p-dipole operator, which can
be parametrized from experiment32,34 or alternatively by the
coupling of the p-dipole operator to an effective field in the
p-region, as has been more recently derived from a theory of
the nonlinear response of the s-region to a pulse of light.36,39

To implement a numerical solution of these equations, it is
further necessary to transform the partial differential equation
of the p-density amplitudes into coupled ordinary differential
equations in time. This can be done expanding the amplitudes
in a basis of electronic states{|ψJ

(el)(XB)〉}, to obtain

where the bracket notation refers to states of the electronic
system, and using either discretization of the atomic position
variablesXB on a grid or expansions of the statesψJ,R

(nu) in basis
sets, or a combination of discretization and basis set expansion.
This transforms the partial differential equation forψR

p(XB,t)
into a set of coupled ordinary differential equations for
amplitudes in a matrix representationψ(nu)(t) of ψp(t) for given
initial stateR,

The equations in sets (18A′), (14B), and (14C) are all coupled,
but sets (14B) and (14C) can first be integrated over time to
obtain the response of the s-region, and their results can be
interpolated over time as needed to integrate the set (18A′),
where the effective field must be obtained from that response.
For a basis set in the s-region of dimensionNB

s , sets (14B) and
(14C) contain (NB

s )2 + 2 coupled equations, which must be
solved with a numerical procedure suitable for the fast density
oscillations in that region. The total number of p-region
amplitudes that are coupled over time depends on the number
Nel

p of electronic basis functions there, the number of grid
pointsNG

p for atomic position variables, and the numberNB
p of

atomic basis functions, which give a total ofNel
p NG

p NB
p coupled

differential equations in time. These contain the effective field

∂

∂t
ψR

p(XB,t) ) - i
p
[F̂p(t) - iŴp(t)/2]ψR

p(XB,t) (A)

dT/dt ) F[T(t),N(t)] dN/dt ) G[T(t),N(t)] (B)

dγs/dt ) -(i/p)[Fs(t),γ
s(t)] + L s

(D)γs(t) (C) (14)

|ψR
p(XB,t)〉 ) ∑

J

|ψJ
(el)(XB)〉ψJ,R

(nu)(XB,t) (15)

d
dt

ψ(nu)(t) ) - i
p
[Fp(t) - iWp(t)/2]ψ(nu)(t) (A′) (16)

F̂(t) ) ∑
R

wR|ΨR
p〉〈ΨR

p| (9)

ip
∂

∂t
|ψR

p〉 ) (F̂p - iŴp/2)|ψR
p(t)〉 (10)

Ŵp(t) ) (2/p)∫0

t
dt′ trs[Ĥ′Û0(t,t′) Ĥ′Γ̂s(t′)] (11)

∂Γ̂s/∂t ) -(i/p)F̂sΓ̂
s(t) + L̂ s

(D)Γ̂s(t) (12)

L̂ s
(D)Γ̂s(t) ) ∑

L

{Ĉs
(L)Γ̂s(t)Ĉs

(L)† - [Ĉs
(L)†Ĉs

(L), Γ̂s(t)]+/2}

(13)
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in the p-region and can be solved with an extension of the split-
operator propagator that includes a dissipative potential matrix.

3. An Application to Femtosecond Photodesorption in
CO/Cu(001)

The main steps in the femtosecond photodesorption of CO
from Cu(001) are excitation by the substrate, followed by energy
transfer to the adsorbate region and break-up of the Cu-C
bond.27,44,45 The desorption dynamics is fast compared with
vibrational motions in the substrate metal, so that only electronic
excitation and de-excitation of its electrons must be considered.
The steps are as follows.

corresponding to an indirect photodesorption, wherev indicates
the collection of vibrational quantum numbers for the normal
modes of the adsorbate. The modes with the lowest excitation
energy, and most likely to be excited during desorption, are
the so-called frustrated translation and frustrated rotations.46 The
position of the center of mass of the CO above the surface is
called Z, the frustrated translation coordinate parallel to the
surface isx, and the frustrated rotation angles are (θ, φ), as
shown in Figure 2, in a cluster model CO/Cu6 for the adsorbate
site.

In our model, the transfer of energy from the substrate metal
to the adsorbate region is mediated by the dipole-dipole
interaction

from which the SCF potentialĜp, the dissipative potentialŴp,
and dissipative rates in the s-region can be derived. HereD̂Bp is
the dipole operator of the p-region,P̂Bs is the dipole operator
per unit volume in the s-region, andnbi ) rbi/r i, i ) p, s, denotes
a unit vector in the p- or s-region. This simplifies for an electric
field of long wavelength polarized parallel to the surface, to
give for the SCF potential36

whereDs(t;Zs) is the average substrate dipole induced by the
applied field inside the metal at distanceZs.

Expanding the amplitudes in a basis set of vibronic states

where the ket indicates an electronic state for fixed nuclear
positions, andφvx

T , Ur, andVs are basis functions suitable for
the surface vibrational modes with quantum numbersv ) (Vx,
r, s), the p-amplitudeΨgv, starting in the ground electronic and
vibrational statev of the adsorbate, is

with J ) g, e electronic states, and the equation for the matrix
ψ(nu)(Z,t) of coefficient functions is

to be solved with a split-operator propagator22 modified to
include the dissipative potential term, and using a fast Fourier
transform on aZ-grid of NG

(p) values. The effective electric field
in the p-region,Ep(t) is obtained from the nonlinear response
of the metal substrate as explained below.

Desorption yieldsYR from initial vibrational-electronic state
R ) (g, vZ, v), are obtained integrating the probabilities from a
desorption distanceZD to infinity,

which also provides the time evolution of the desorption yield
as a pulse of light is applied.

The potential energy functions in the p-region were previously
obtained from information about measured bond distances and
energies for the ground state and from electronic structure
calculations within a semiempirical approximation for ground
and excited states. Electronic states were obtained from
ZINDO-CI calculations,47,48 which provided potential energy
surfaces and transition dipoles for adiabatic states for our model
of CO adsorbed on a cluster Cu6 of surface atoms. The excited
state with the largest transition dipole in the region of relevant
photon energies (around 2 eV), and the ground electronic state,
form a two-state basis set, so that J) g, e, giving an adiabatic
electronic representation of operators in terms of 2× 2 matrices.
The matrices were then transformed into a diabatic representa-
tion, to eliminate momentum couplings and numerically solve
the matrix differential equations. The potentials and couplings
were parametrized as shown in our recent study of the dynamics
induced by an intense laser pulse.34,36,39Further expansion in
vibrational states and on a grid forZ transforms the partial
differential equations into coupled ordinary differential equa-
tions. In matrix form, the equation for the nuclear density
amplitudes is in detail

The propagation of the density amplitudes has been done
specifying initial states att ) 0 with vibrational quantum
numbersVZ ) Vx ) Vθ ) Vφ ) 0, corresponding to ground
vibrational states of frustrated translations and rotations.

The integration over time in the p-region was done with a
split-operator propagation (SOP) scheme21,49and a fast Fourier

Figure 2. The CO/Cu6 cluster model of CO/Cu(001) for the adsorbate
region. HereZ is the position of the center of mass of CO above the
surface,x is the frustrated translation variable, andθ andφ are frustrated
rotation variables.

CO(v)/Cu(001)98
light

CO(v)/Cu(001)* (light absorption)

CO(v)/Cu(001)*f CO(v′) + Cu(001)* (breakup)

Ĥps ) ∫d3rs

D̂Bp( rbp)·P̂Bs( rbs) - 3[D̂Bp( rbp)·nbp]P̂Bs( rbs)·nbs

| rbs - rbp|3
(17)

Ĝp( rbp,t) ) D̂p(zp) Ds(t;Zs)|Zs - zp|-3 (18)

|ΦJv(Z,x,θ,φ)〉 ) |φJ
(el)(Z,x,θ,φ)〉φvx

T (x) Ur(θ) Vs(φ) (19)

|Ψgv(Z,x,θ,φ,t)〉 ) ∑
J,v′

|ΦJv′(Z,x,θ,φ)〉ψJv′,gv
(nu) (Z,t) (20)

∂ψ(nu)

∂t
) - i

p
[F̂p - iWp/2 - Ep(t)Dp]ψ

(nu) (21)

YR(t) ) ∑
Iv′
∫ZD

∞
dZ |ψIv′,R

(nu) (Z,t)|2 (22)

d
dt

ψ(t) ) - i
p(K̂ + V + G - i

2
W) ψ(t) (23)
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transformation (FFT) between space domain and momentum
domain for the space variables, repeatedly used at time intervals
tn ) t0 + n∆t, n ) 1 toNt, and modified to include a dissipative
potential.33,34The SOP factorization can be used repeatedly, first
for the dissipative potential and then for the SCF Hamiltonian
including the field, to obtain the time evolution of the wave
function from t to t + ∆t as

with V̂′(t) ) V̂ + Ĝ(t) so that

which is accurate to order∆t3. Exponentials of matrices are
easily obtained by diagonalization of the exponents, and the
exponential with the kinetic energy operator follows from a fast
Fourier transform to momentum variables. The propagation was
done with a grid of points in theZ variable, with vibrational
basis sets of increasing size, and with sufficient time steps to
converge to desired accuracies.

In the s-region, the nonlinear optical response of the metal
substrate results from electronic excitations between band states
that can be described as vertical transitions of fixed wavevector
kB, between conduction and occupied bands, b) c, u. It is
sufficient for our model to assume that electronic transitions
occur between one-electron band states and to describe them
in terms of the one-electron density matrix in the s-region. The
one-electron density operatorγ̂s

el(t) in the s-region becomes
therefore a 2× 2 matrix, and the average value of the total
electric dipole in the s-region,Ds(t), can be obtained from the
one-electron dipoled̂s

el and a knowledge of the number of
electronsNh el(t) in the s-region, by means of

The p- and s-regions are coupled through the dissipative
potentialW(Z,t) and an effective electric fieldEp(t) generated
by the s-dipoleDh s(t), which couples toDp.

The time evolution of the electronic density matrix can be
obtained from the optical Bloch equations,5 for a femtosecond
light pulse chosen of the form

and introducing the rotating wave approximation, which keeps
only terms that satisfy the resonance conditionεukB - εckB ) pω.
Dissipative effects due to energy transport away from the surface
into the metal, and due to energy transfer to the adsorbate bond
that breaks up, can be described with the dissipative superop-
eratorL̂ s

(D) in those equations. As in our previous treatment,36

dissipation in the s-region is described in a semiempirical way
using the Lindblad formL̂ s

(D)γ̂s ) ΣJ(ĈJγ̂sĈJ
† - 1/2[ĈJ

†ĈJ,
γ̂s]+), where now the operatorsĈJ ) xκbb′|b〉〈b′| are obtained
from relaxation ratesκbb′ due to electron-electron collisions
and interband transitions.36 The density matrix can be conve-
niently propagated in time using its Pauli components fromγ

) γ0I + Σjσjγj, whereσj, j ) 1, 2, 3, are the Pauli matrices,
and γ0 ) 1/2 by normalization. It is obtained by solving the
modified optical Bloch equations containing dissipative rates
and a femtosecond light pulse,

HereΩ1 ) -2Re(dcu
el )E0/p andΩ2 ) - 2Im(dcu

el )E0/p are Rabi
frequencies containing the one-electron transition dipoledcu, τpop

is the decay time of the population difference, andτcoh is the
coherence relaxation time, both derived from the electronic
relaxation rates.36

Calculation of the nonlinear response also requires solutions
of the rate equations for the time-dependent excited electron
density and temperature in the metal substrate,36,50,51

whereJ(t) ) Sh(t)Bs, Sh(t) is the pumping rate,gep is the electron-
phonon coupling constant,γel is the electron specific heat
constant, andKd is a rate of decay due to electron-electron
and electron-phonon collisions.

The two sets of equations above provide the SCF potential
energy operator and effective electric field at the p-region, and
in particular, their components lead to energy transfer, from

as follows from energy transfer from s- to p-regions through a
dipole-dipole interaction.36

The physical parameters needed in the potential functions and
dipole of the p-region, and the optical Bloch and transport
equations for the s-region, have been obtained from our previous
electronic structure calculations and from experiment, as
tabulated in refs 34 and 36 for theZ andx dependencies, and
as recently calculated52,53 for the θ and φ dependencies. The
pulse parameters were a light wavelengthλ0 ) 620 nm, pulse
width τp ) 100 fs, and field strength in the range 0-6 mJ/cm2.
The s-region equations (28) and (29) were integrated with a
Runge-Kutta algorithm and time stepδt determined by a
relative error toleranceη ) 10-5 and provide the effective field
Ep(t). With a basis set of dimensionNB

(s) ) 2 for the reduced
density matrix, the number of coupled s-equations isN(s) ) 5.

The p-region equations (23) are solved with an expansion in
a basis set ofNel

(p) ) 2 electronic states,NB
(p) vibrational

functions and discretization on a grid ofNG
(p) ) 512 points for

Z, giving matrices of dimensionN(p) ) 2NB
(p)‚NG

(p). The time
propagation is done with a split-operator and a time step∆t )
5.0 au takenNt ) 3000 times, with the effective electric field
obtained at each time step by interpolation. The nonlinear
dependence of yields versus the fluenceF was considered within

γ̆1 ) Ω2f (t)γ3 -
γ1

τcoh

γ̆2 ) - Ω1f (t)γ3 -
γ2

τcoh

γ̆3 ) (Ω1γ2 - Ω2γ1)f (t) - 1
τpop

(γ3 - γ̃3) (28)

dNh el
/

dt
) J(t)Nh el

0 - KdNh el
/ (t)

dTel

dt
)

gep(Tin - Tel) + Sh(t)

γel Tel
(29)

Ĝp
/(t) ) -D̂p(zp) Ep(t) sin(ω0t)

Ep(t) ) -Nh el
/ (t)|dcu

(el)|2γ2(t)|Z - zp|-3 (30)

ψ(t+∆t) ) U(t+∆t,t) ψ(t)

U(t+∆t,t) ) UW(∆t/2) U′(t+∆t,t) UW(∆t/2)

UW(∆t/2) ) exp[-W∆t/(4p)]

U′(t+∆t,t) ) exp{-i[ K̂ + V + Gl(t)]∆t/p} (24)

U′(t+∆t,t) ) exp[-iV′(t)∆t/(2p)] exp[-iK̂∆t/p]
exp[-iV′(t)∆t/(2p)] (25)

Dh s(t) ) Nh el(t)
trs[γ̂s

el(t)d̂s
el]

trs[γ̂s
el(t)]

) Nh el(t)
Σb,b′ γb,b′

el (t) db′,b
el

Σb,b′ γb,b′
el

(26)

E(t) ) E0 exp[-4(t - t0)
2/τp

2] cos(ω0t) (27)
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four models. The simplest one involves only theZ position
above the surface and is called here the 1-D model. Two 2-D
models were studied, one including the space variables (Z, x),
with Nvib ) 5 harmonic oscillator functions, to account for
coupling to the frustrated translation parallel to the surface, and
the other including only (Z,θ), with Nrot ) 6 Legendre
polynomials combined to account for frustrated rotation states
uF(θ). A more elaborate 3-D model involves the three space
variables, (Z, x, θ), in addition to time, all treated quantum
mechanically with a basis set of dimensionNB

(p) ) 2 × 5 × 6
) 60 at each of the 512 grid points. Harmonic oscillator basis
functions were used for the frustrated translation, and spherical
harmonics for the frustrated rotations. The initial vibrational
state for a boundCO was chosen to be the ground stateVZ )
Vx ) F ) s ) 0, suitable for surface temperatures around 100
K. In the calculations, it was found that the dependence of
potentials and couplings on theφ variable was quite small,
because theCu(001) surface has small corrugation. The sizes
of vibrational basis sets required for convergence were found
increasing them for thex-variable to a maximum of 20 basis
functions, and forθ to a maximum of 10 functions. The finally
chosen sizes were found to give the desired accuracy for the
present properties, which are sums over vibrational states.

We verified that results for variables (Z, x) agreed numerically
with previous calculations using grids inZ andx.36 Comparisons
of the four models with experimental data37 are shown in Figure
3. A single value of the yield was fit to experiment at a fluence
of 3.5 mJ/cm2 by choosing the value ofBs in the rate equations.
This comparison establishes that the treatment is realistic and
that the 1-D model is useful for studies at low fluence. The
models also display a delay between pulse arrival and photo-
desorption, as observed in the experiments, calculated here to
be about 250 fs, and provide insight on the time evolution of
desorption, not shown here. Also calculated but not shown here
areTel(t) andNhel(t), which were previously published36 and agree
with model results37,50,51used to interpret experiments.

The 2-D models give similar results for the smaller fluence
values and are very close to the 1-D model. However, as the
fluence increases, the model including the frustrated rotation
gives better agreement with experiment. The 3-D model is of
course more realistic, and Figure 3 shows a widening difference
with the 1-D model at high fluence values with the 3-D model
giving larger yields, which can be expected because the 3-D
model allows for desorption through more states insofar as it
includes both the frustrated translation and rotation modes of
adsorbate vibrations. Calculations at even higher fluence show

that the 3-D model also gives a flatter graph, due to increased
de-excitation rates.

4. Conclusions

The present paper describes a general density matrix approach
for the treatment of dissipative dynamics of a primary region
with many coupled quantum states, strongly interacting with
an active medium or secondary region. This approach leads to
sets of coupled differential equations (14A)-(14C) in the text,
obtained from an atomic model of the p-region, and a statistical
model of the s-region.

The treatment was applied to the photodesorption of CO from
Cu(001), a case where four space variables have been treated
quantum mechanically, and up to 60 coupled states on a grid
were included in density matrix calculations of models with an
increasing number of degrees of freedom in the p-region.
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